US 2006/0026353 Al

process also takes time and consumes power. There can be
situations in which the RAMset is cleaned to make room for
new data, the RAMset is used for the new data, but returns
back to the prior set local variables (saved to memory)
relatively quickly. In fact, one can imagine a loop in the
executable code in which a method invokes a new method
each time through the loop. This repeated invocation of the
new method may entail a clean operation and the exit from
the new method back to the calling method will a corre-
sponding flush and memory retrieval of the calling method’s
data. This repeated invocation of a called method and return
back to the calling method (an “oscillation”) at the boundary
of the RAMset space (thereby forcing a clean, flush, etc.)
can consume considerable power and time just cleaning the
RAMset and then flushing and bringing the data back into
the RAMset. The following embodiment solves this prob-
lem.

[0066] In accordance with a preferred embodiment, FIG.
13 shows the RAMset 126 divided into two portions 680 and
682. In some embodiments, the two portions may each
represent one-half of the size of the RAMset, but in other
embodiments the division between the two portions need not
be equal. For purposes of this disclosure, the portion 680 is
referred to as the “upper” portion (also referred to as portion
“I”) of the RAMset and portion 682 is the “lower” portion
(portion “IT”). Data (e.g., Java local variables) can be stored
in either or both portions 680 and 682. In accordance with
the preferred embodiment, preferably only one portion at a
time is actively used by the cache subsystem to store or
retrieve data. The non-active portion may include valid data,
or not, but, while inactive, is not used to store new data or
provide data contained therein. The upper portion 680 can be
the active portion at a given point in time, while lower
portion 682 is thus inactive. Later, the lower portion 682 can
become the active portion while the upper portion becomes
active. Which portion is active can thus switch back and
forth in accordance with the preferred embodiments and as
illustrated in FIG. 14 and discussed below.

[0067] The embodiment of the RAMset in multiple por-
tions uses the commands listed in Table 1.

TABLE 1
COMMANDS
Command Description
1 SPP Switch RAMset to scratch pad policy
2 CP Switch RAMset to cache policy
3 UPPER CLEAN Clean upper portion of RAMset to memory
4 LOWER CLEAN Clean lower portion of RAMset to memory
5 UPPER FLUSH Invalidate upper portion
6 LOWER FLUSH Invalidate lower portion
7 R.SET(++) Allocate new memory page and set RAMset base
address accordingly in Full__Set_ Tag register
8 R.SET(--) Free current memory page and restore RAMset

base address to previous base address in
Full_Set_ Tag register

The SPP and CP commands cause the RAMset to be in the
SPP and CP modes as discussed previously. The UPPER
CLEAN and LOWER CLEAN commands can be imple-
mented using the D-RAMset-CleanRange and D-RAMset-
CleanEntry commands to clean just the upper or lower
portions, respectively. Similarly, the UPPER FLLUSH and
LOWER FLUSH commands can be implemented using the

Feb. 2, 2006

D-RAMset-FlushRange and D-RAMset-FlushEntry com-
mands to flush just the upper or lower portions, respectively.
The R.SET(++) command causes a new page of external
memory 106 to be allocated and mapped to the RAMset
using the base address of the new memory page. The
previous base address of the RAMset is saved as part of the
data in the RAMset. The R.SET(--) command essentially
performs the reverse operation of the R.SET(++) command
and frees the current external memory page while restoring
the base address of the RAMset to the previous base address.

[0068] FIG. 14 shows eight states of the RAMset. The
eight states are identified with reference numerals 700, 702,
704, 706, 708, 710, 712, and 714. Each state of the RAMset
shown illustrates the upper and lower portions discussed
above with respect to FIG. 13. An “X” in one of the RAMset
portions indicate that that particular portion is the active
portion.

[0069] The RAMset may initialize into state 700. In state
700, the RAMset is in the SPP mode to permit the upper
portion to be used to store data (e.g. local variables) but to
avoid accesses to external memory 106 upon a cache miss.
As explained above, a JAVA method typically requires an
allocation of a portion of the RAMset for use for its local
variables. Further, one method may invoke another method
which, in turn, may invoke another method, and so on. Each
such invoked method requires a new allocation of storage
space in the RAMset. In state 700, each such allocation falls
within the upper portion which is the active portion.

[0070] At some point, however, an invocation of a new
method may require an allocation of RAMset storage that
may exceed the available unused capacity of the upper
portion. At this point, the lower portion of the RAMset needs
to be used to store additional local variables for the newly
invoked method. The invocation of this new method is
identified by arrow 701 which points to RAMset state 702.

[0071] In RAMset state 702 (which is also in operated in
the SPP mode), the lower portion of the RAMset is now the
active portion. The lower portion therefore can be used to
store local variables for the newly invoked method and any
additional methods that are invoked therefrom. As explained
above, each called method returns to its calling method. As
such, the method that was invoked that caused the transition
from the upper portion being active to the lower portion of
the RAMset being active may eventually return to the
calling method. The return to such method is illustrated with
arrow 703. Further, an oscillation may occur between such
methods-the method that invoked a method causing the
transition to the lower portion as well as the transition back
from such method. This type of oscillation (identified by
oppositely pointing arrows 701 and 703 in dashed circle
690), however, is not as problematic as the oscillations noted
above because the oscillation identified by arrows 701 and
703 do not require cleaning, flushing, or re-loading the
RAMset. That is, no memory access is required to oscillate
between the two RAMset states 700 and 702. Because no
memory accesses are required, such oscillations advanta-
geously take less time and consume less power.

[0072] However, as more and more methods are invoked
requiring allocations of the lower portion of the RAMset
while in state 702, eventually, the entire RAMset (i.e. both
portions) may become full of valid data. At this point, any
new method that is invoked will require an allocation of

